Mathematics Curriculum Intent

Department Philosophy:

The WHSG Mathematics Department's principal focus is to develop the mathematical confidence of all our students and to cultivate an ethos of intellectual curiosity and a love of learning throughout their course. The curriculum is designed to encourage young people into becoming logical thinkers, able problem solvers and lifelong mathematicians as a product of stimulating and reflective teaching. Our team of enthusiastic Mathematics specialists strive to promote interest, curiosity and enjoyment in the learning of Mathematics by providing a supportive yet challenging environment, where all students believe they can achieve and are able to develop their ability to articulate technical language and analytical skills.

By the end of Key Stage 3 and 4 our students will know how to:					By the end of Key Stage 5 our students will know how to:		
1.	Apply the four operations to	21.	Factorise and solve linear and	1.	Structure, use and apply different	19. Integrate a range of functions using	
	integers, decimals and fractions	ł	quadratic equations using a		methods of proof.	various methods and evaluate	
2.	Use conventional notation for	l	variety of methods including	2.	Apply the laws of indices and laws	definite integrals to find areas	
	priority of operations, including	l	linear and quadratic simultaneous		of logarithms	between curves	
	brackets, powers, roots and	l	equations.	3.	Manipulate polynomials	20. Differentiate and integrate simple	
	reciprocals	22.	Rearrange formulae to change		algebraically; use factor theorem	functions and relations defined	
3.	Use the concepts and vocabulary	ł	the subject		and decomposition of rational	implicitly or parametrically	
	of prime numbers, factors	23.	Know the difference between an		functions into partial fractions	21. Construct and solve simple	
	(divisors), multiples, common	l	equation and an identity; argue	4.	Sketch graphs of different functions,	differential equations in pure	
	factors, common multiples,	ł	mathematically to show algebraic		including modulus, understanding	mathematics and in context,	
	highest common factor, lowest	l	expressions are equivalent, and		the effects of transformations; use	interpreting the solution	
	common multiple and prime	l	use algebra to support and		to interpret algebraic solutions	22. Use numerical methods to locate	
	factorisation.	ł	construct arguments and proofs	5.	Use various functions in modelling,	roots of functions, solve equations	
4.	Calculate with roots, and with	24.	Where appropriate, interpret		including consideration of limitations	and problems in context,	
	integer and fractional indices	l	simple expressions as functions		and refinements of the models	recognising their limitations	
	(positive and negative)	ł	with inputs and outputs; interpret	6.	Use the coordinate geometry of	23. Understand and use numerical	
5.	Calculate exactly with fractions,	l	the reverse process as the		straight line models and circles in a	integration of functions, including	
	surds and multiples of π including	l	`inverse function'; interpret the		variety of contexts	the use of the trapezium rule	
	rationalise denominators	ł	succession of two functions as a	7.	Use parametric equations of curves	24. Use vectors in two and three	
6.	Identify and work with fractions in	l	`composite function'		in modelling in a variety of contexts	dimensions to solve problems in	
	ratio problems including changing	25.	Plot and interpret linear,		and be able to convert between	pure mathematics and in context,	
	recurring decimals to fractions.	ł	quadratic, cubic, reciprocal and		Cartesian and parametric forms	including forces and kinematics	
7.	Calculate with and interpret	l	exponential graphs	8.	Apply the binomial expansion of	25. use calculator technology efficiently	
	standard form	26.	Identify key features of linear		(a+bx) ⁿ for any rational <i>n</i> ;	including to compute summary	
8.	Estimate answers, round	ł	graphs including parallel and		understanding the link to binomial	statistics	
	numbers and measures to an	ł	perpendicular, gradients and y		probabilities, validity and its use for	26. Use, select and critique sampling	
	appropriate degree of accuracy	ł	intercept.		approximations	techniques in the context of solving	
	and use inequality notation to	27.	Identify and interpret roots,	9.	Work with sequences and series	a statistical problem	
	specify simple error intervals due	ł	intercepts and turning points of		including arithmetic, geometric and	27. Select and interpret data	
	to truncation or rounding		quadratic functions including		recurrence relations, to solve	presentation techniques for single	
		L	using completing the square.		problems and in modelling	and bivariate data	

• Angle and intermediates f	20. Clastele two slations and	10 the developed and use the size is	20 Calculate and intermediate
9. Apply and interpret limits of	28. Sketch translations and	10. Understand and use the sine, cosine	28. Calculate and interpret measures of
accuracy, including upper and	reflections of given functions	and tangent functions and graphs.	central tendency and variation.
lower bounds	29. Calculate gradients and areas	and relationship to their reciprocals	29. Work efficiently with large data sets
10. Calculate simple probabilities and	under graphs and interpret	11. Work with radian measure,	30. Model with probability and link to
solve more complex problems	distance time graphs, velocity	including use of small angle	discrete and continuous
using Venn and tree diagrams	time graphs and graphs in	approximations	distributions.
and the product rule for counting.	financial contexts.	12. Apply trigonometry functions and	31. Understand and use the Normal
11. Understand conditional probability	30. Use the equation of a circle with	identities to solve equations,	distribution and simple, discrete
and independent and dependent	centre at the origin.	construct proofs and solve problems	probability distributions including
events.	31. Find approximate solutions to an	in context, including those involving	the binomial distribution in context
12. Use appropriate charts and	equation using iteration	vectors, kinematics and forces	32. Use the correct language of
diagrams to analyse and interpret	32. Solve linear and quadratic	13. Recognise and work with	statistical hypothesis testing and
data appropriately.	inequalities algebraically and	exponential and logarithmic	conduct various statistical
13. Use appropriate sampling	graphically including set notation.	functions and their graphs including	hypothesis tests interpreting the
methods and justify their use.	33. Recognise linear and non linear	solving equations and estimating	results in context.
14. Use data to make predictions,	sequence patterns.	parameters	33. Recognise and use fundamental and
follow trends with interpolation	34. Confidently use ratio to solve	14. Use exponential growth and decay	derived quantities and units in the
and extrapolation and identify the	problems in a variety of different	to model real life situations	S.I. system
dangers of doing so.	contexts.	appreciating why exponential	34. Derive and use the formulae for
15. Use of compound measures	35. Use direct and inverse proportion	models are suitable, any limitations	constant acceleration for motion in
16. Confidently apply geometric	accurately	and refinements needed.	a straight line and interpret graphs
reasoning to angle problems,	36. Work confidently with percentages	15. Differentiate, including from first	in kinematics
circle theorems and proof.	including solving problems	principles, and interpret derivatives	35. Use calculus in kinematics for
17. Apply transformations effectively	including percentage change,	in connection to sections of curves	motion in a straight line and model
including the use of invariance	increase/decrease and calculating	and as a rate of change	motion under gravity in a vertical
18. Effectively use the rules of	interest.	17. Differentiate a range of functions	plane using vectors; projectiles.
similarity and congruency.	37. Confidently calculate area and	using various methods to solve	36. Know and apply Newton's laws for
19. Understand and apply the	volume of 2 and 3d shapes	problems including those involving	motion in a straight line to problems
concepts of Pythagoras' Theorem	38. Use vectors to construct	tangents, stationary points,	including resolving forces, pulleys,
and trigonometry to right angled	geometric arguments and proofs.	connected rates of change and	equilibrium and dynamics
triangle, and trigonometry to non	39. Confidently use all maths skills	inverse functions	37. Understand and use the $F \le R$
right angled triangles.	learnt to answer open ended	18. Know and use the Fundamental	model for friction; coefficient of
20.Simplify and manipulate algebraic	unstructured problems with an	Theorem of Calculus and appreciate	friction; limiting friction and statics.
expressions (including those	application to real life.	differentiation as a rate of change	38. Use moments in simple static
involving surds and algebraic	40. Be able to use multiplicative	and integration as the limit of a sum	contexts.
fractions)	reasoning across topics.		

At WHSG our curriculum intent is ambitious but always inclusive, composed of powerful knowledge and cultural capital, coherent and well-sequenced, and broad only specialising when necessary