Mathematics Curriculum Intent

Department Philosophy: The WHSG Mathematics Department's principal focus is to develop the mathematical confidence of all our students and to cultivate an ethos of intellectual curiosity and a love of learning throughout their course. The curriculum is designed to encourage young people into becoming logical thinkers, able problem solvers and lifelong mathematicians as a product of stimulating and reflective teaching. Our team of enthusiastic Mathematics specialists strive to promote interest, curiosity and enjoyment in the learning of Mathematics by providing a supportive yet challenging environment, where all students believe they can achieve and are able to develop their ability to articulate technical language and analytical skills.

By the end of Key Stage 3 and 4 our students will know how to:		By the end of Key Stage 5 our students will know how to:	
1. Apply the four operations to integers,	21.Factorise and solve linear and quadratic	1. Structure, use and apply different methods	19. Integrate a range of functions using various
decimals and fractions	equations using a variety of methods	of proof.	methods and evaluate definite integrals to
2. Use conventional notation for priority of	including linear and quadratic	2. Apply the laws of indices and laws of	find areas between curves
operations, including brackets, powers,	simultaneous equations.	logarithms	20. Differentiate and integrate simple functions
roots and reciprocals	22. Rearrange formulae to change the subject	3. Manipulate polynomials algebraically; use	and relations defined implicitly or
3. Use the concepts and vocabulary of prime	23. Know the difference between an equation	factor theorem and decomposition of	parametrically
numbers, factors (divisors), multiples,	and an identity; argue mathematically to	rational functions into partial fractions	21. Construct and solve simple differential
common factors, common multiples,	show algebraic expressions are equivalent,	4. Sketch graphs of different functions,	equations in pure mathematics and in
highest common factor, lowest common	and use algebra to support and construct	including modulus, understanding the effects	context, interpreting the solution
multiple and prime factorisation.	arguments and proofs	of transformations; use to interpret	22. Use numerical methods to locate roots of
4. Calculate with roots, and with integer and	24. Where appropriate, interpret simple	algebraic solutions	functions, solve equations and problems in
fractional indices (positive and negative)	expressions as functions with inputs and	5. Use various functions in modelling, including	context, recognising their limitations
5. Calculate exactly with fractions, surds and	outputs; interpret the reverse process as	consideration of limitations and refinements	23. Understand and use numerical integration of
multiples of π including rationalise	the 'inverse function'; interpret the	of the models	functions, including the use of the trapezium
denominators	succession of two functions as a	6. Use the coordinate geometry of straight line	rule
6. Identify and work with fractions in ratio	'composite function'	models and circles in a variety of contexts	24. Use vectors in two and three dimensions to
problems including changing recurring	25. Plot and interpret linear, quadratic, cubic,	7. Use parametric equations of curves in	solve problems in pure mathematics and in
decimals to fractions.	reciprocal and exponential graphs	modelling in a variety of contexts and be	context, including forces and kinematics
7. Calculate with and interpret standard form	26. Identify key features of linear graphs	able to convert between Cartesian and	25. use calculator technology efficiently
8. Estimate answers, round numbers and	including parallel and perpendicular,	parametric forms	including to compute summary statistics
measures to an appropriate degree of	gradients and y intercept.	8. Apply the binomial expansion of (a+bx) ⁿ for	26. Use, select and critique sampling techniques
accuracy and use inequality notation to	27. Identify and interpret roots, intercepts and	any rational n; understanding the link to	in the context of solving a statistical problem
specify simple error intervals due to	turning points of quadratic functions	binomial probabilities, validity and its use for	27. Select and interpret data presentation
truncation or rounding	including using completing the square.	approximations	techniques for single and bivariate data
	28. Sketch translations and reflections of given	9. Work with sequences and series including	28. Calculate and interpret measures of central
9. Apply and interpret limits of accuracy,	functions	arithmetic, geometric and recurrence	tendency and variation.
including upper and lower bounds	29. Calculate gradients and areas under graphs	relations, to solve problems and in modelling	29. Work efficiently with large data sets
10. Calculate simple probabilities and solve	and interpret distance time graphs,	10. Understand and use the sine, cosine and	30. Model with probability and link to discrete
more complex problems using Venn and	velocity time graphs and graphs in	tangent functions and graphs. and	and continuous distributions.
tree diagrams and the product rule for	financial contexts.	relationship to their reciprocals	31. Understand and use the Normal distribution

counting.	30. Use the equation of a circle with centre at	11. Work with radian measure, including use of	and simple, discrete probability distributions
11. Understand conditional probability and	the origin.	small angle approximations	including the binomial distribution in context
independent and dependent events.	31. Find approximate solutions to an equation	12. Apply trigonometry functions and identities	32. Use the correct language of statistical
12. Use appropriate charts and diagrams to	using iteration	to solve equations, construct proofs and	hypothesis testing and conduct various
analyse and interpret data appropriately.	32. Solve linear and quadratic inequalities	solve problems in context, including those	statistical hypothesis tests interpreting the
13. Use appropriate sampling methods and	algebraically and graphically including set	involving vectors, kinematics and forces	results in context.
justify their use.	notation.	13. Recognise and work with exponential and	33. Recognise and use fundamental and derived
14. Use data to make predictions, follow trends	33. Recognise linear and non linear sequence	logarithmic functions and their graphs	quantities and units in the S.I. system
with interpolation and extrapolation and	patterns.	including solving equations and estimating	34. Derive and use the formulae for constant
identify the dangers of doing so.	34. Confidently use ratio to solve problems in a	parameters	acceleration for motion in a straight line and
15. Use of compound measures	variety of different contexts.	14. Use exponential growth and decay to model	interpret graphs in kinematics
16. Confidently apply geometric reasoning to	35. Use direct and inverse proportion	real life situations appreciating why	35. Use calculus in kinematics for motion in a
angle problems, circle theorems and	accurately	exponential models are suitable, any	straight line and model motion under gravity
proof.	36. Work confidently with percentages	limitations and refinements needed.	in a vertical plane using vectors; projectiles.
17. Apply transformations effectively including	including solving problems including	15. Differentiate, including from first principles,	36. Know and apply Newton's laws for motion in
the use of invariance	percentage change, increase/decrease	and interpret derivatives in connection to	a straight line to problems including
18. Effectively use the rules of similarity and	and calculating interest.	sections of curves and as a rate of change	resolving forces, pulleys, equilibrium and
congruency.	37. Confidently calculate area and volume of 2	17. Differentiate a range of functions using	dynamics
19. Understand and apply the concepts of	and 3d shapes	various methods to solve problems including	37. Understand and use the $F \leq R$ model for
Pythagoras' Theorem and trigonometry to	38. Use vectors to construct geometric	those involving tangents, stationary points,	friction; coefficient of friction; limiting
right angled triangle, and trigonometry to	arguments and proofs.	connected rates of change and inverse	friction and statics.
non right angled triangles.	39. Confidently use all maths skills learnt to	functions	38. Use moments in simple static contexts.
20.Simplify and manipulate algebraic	answer open ended unstructured	18. Know and use the Fundamental Theorem of	
expressions (including those involving	problems with an application to real life.	Calculus and appreciate differentiation as a	
surds and algebraic fractions)	40. Be able to use multiplicative reasoning	rate of change and integration as the limit of	
	across topics.	a sum	